

晶采光電科技股份有限公司 AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AM-1280800N3TZQW-T49H
APPROVED BY	
DATE	

- ☐ Approved For Specifications
- ☐ Approved For Specifications & Sample

AMPIRE CO., LTD.

Building A., 4F., No.116, Sec. 1, Sintai 5th Rd., Xizhi Dist, New Taipei City 221, Taiwan (R.O.C.)

新北市汐止區新台五路一段 116 號 4 樓(東方科學園區 A 棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

RECORD OF REVISION

Revision Date	Page	Contents	Editor
Date 2014/10/14		New Release	Kokai
1			1

1. Features

10.1 TFT Liquid Crystal Display module is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. It is composed of a TFT LCD panel, a backlight system, a timing controller, voltage reference, common voltage, column driver, row driver circuit and front / bottom bezel , T=2.0mm Tempered glass Cover Lens and Projective Capacitive Touch (USB Interface). This TFT LCD has a 10.1-inch diagonally measured active display area with 1280 horizontal by 800 vertical pixel array resolution.

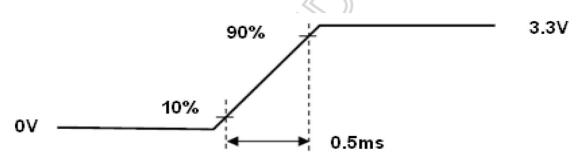
2. PHYSICAL SPECIFICATIONS

Item	Specifications	Remark
LCD size	10.1 inch(Diagonal)	
Driver element	a-Si TFT active matrix	
Display resolution	1280 (W) × 3(RGB) x 800(H) dots	
Display mode	Normally Black, Transmissive (IPS)	
Dot pitch	0.1695 (W) x0.1695 (H) mm	
Active area	216.96 (W) x 135.6 (H) mm	
Module size	247.0 (W) x 166.0 (H) x 9.15 (D) mm	
Surface treatment	HC	
Color arrangement	R.G.B-stripe	
Interface	LVDS	

3. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL		JES	UNIT	REMARK	
I I CIVI	STIVIDOL	MIN	MIN MAX		KEWIAKK	
Power Voltage	V_{DD}	-0.3	7.0	V	VSS=0V, TA=25°C	
Fower voltage	LED_VCC	-0.3	24	V		
Operation Temperature	T _{op}	-20	70	$^{\circ}\! \mathbb{C}$	<i>/</i>	
Storage Temperature	T _{st}	-30	80	°C		

Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.


4. ELECTRICAL SPECIFICATIONS

4.1 Typical Operation Conditions

Item		Symbol	Min	Тур	Max	Unit	Note
LCD Drive Voltage		VDD	3.0	3.3	3.6	V	(2),(4)
VDD Current	White Pattern	IDD		0.27		Α	(3),(4)
VDD Power Consumption	White Pattern	PDD			1.0	W	(3),(4)
Rush Current		Irush			1.5	A	(1),(4),(5)
Allowable Logic/LCD Drive Ripple Voltage		VDDrp		<	300	mV	(4)

Note 1. Measure Condition

Figure 9 VDD rising time

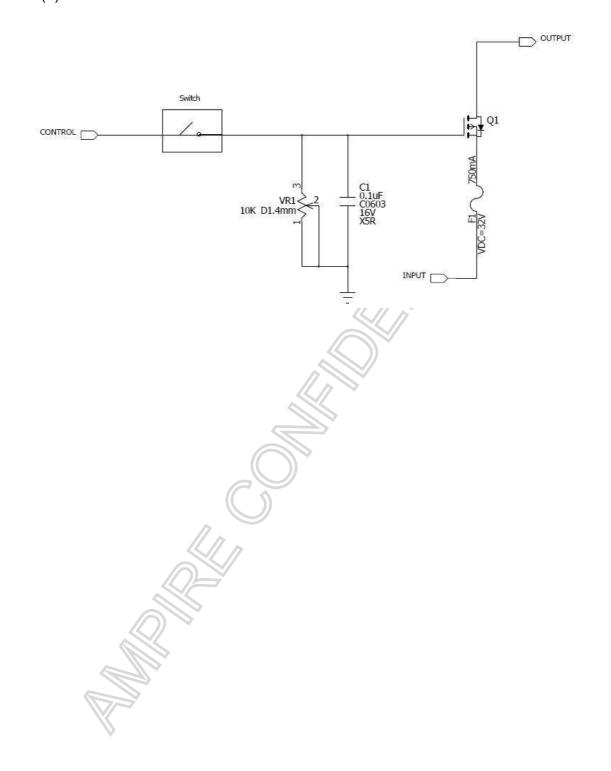
VDD rising time

Note 2.VDD Power Dip Condition

If VTH<VDDRVmin, then tdR10ms; when the voltage return to normal our panel must revive automatically.

Figure 12 VDD Power Dip

Vmin


VTH=2.5V
Vmin=3V

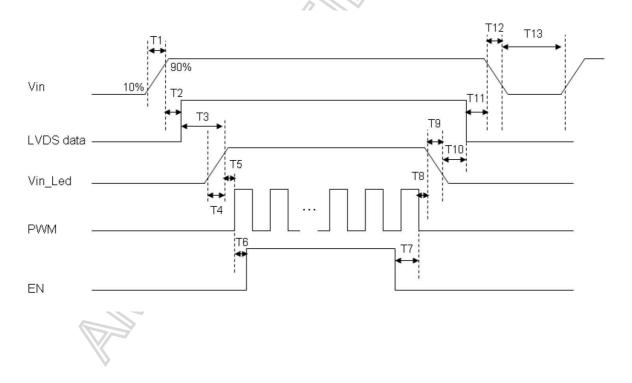
Date: 2014/10/14 AMPIRE CO., LTD.

Note (3) Frame Rate=60Hz, VDD=3.3V,DC Current.

Note (4) Operating temperature 25°C , humidity 55%RH.

Note (5) The reference measurement circuit of rush current.

Date: 2014/10/14


4-2 LED Driving Conditions

ITEM	SYMBOL		MIN	TYP	MA X	UNIT	CONDITION
LED Input Voltage	LED_V	CC	6	12	21	V	Ta=25°C
LED Power Consumption	P _{LED_drive}				2.5	W	Ta=25°C
LED Dice Voltage	V _{LED_DICE}		2.9		3.2	٧	Ta=25°C
LED Dice Current	I _{LED_DICE}			20		mA	Ta=25°C
PWM Signal Voltage	V _{LED_PWM}	High Low	3.0		3.6 0.4	V	Ta=25°C
LED Enable Voltage	V _{LED_EN}	High Low	3.0		3.6 0.4	V	1a=25 C
Input PWM Frequency	F _{LED_PWM}		1 2		2 20	KHz	D _{DIM} ≧1% D _{DIM} ≧5%
LED Life Time	LT		15	7-5	<u>)</u>	kHr	Note1

Note1: Brightness to be decreased to 50% of the initial value.

Note2: one LED dice.

4.3 Power Sequence

Table 10 Power Sequencing Requirements

Parameter	Symbol	Unit	Min	Тур.	Max
VIN Rise Time	T1	ms	0.5		10
VIN Good to Signal Valid	T2	ms	30		90
Signal Valid to Backlight On	Т3	ms	200		
Backlight Power On Time	T4	ms	0.5		
Backlight VDD Good to System PWM On	T5	ms	10		
System PWM ON to Backlight Enable ON	Т6	ms	10		
Backlight Enable Off to System PWM Off	T7	ms	0		
System PWM Off to B/L Power Disable	Т8	ms	10		
Backlight Power Off Time	Т9	ms		10	30
Backlight Off to Signal Disable	T10	ms	200		
Signal Disable to Power Down	T11	ms	0		50
VIN Fall Time	T12	ms		10	30
Power Off	T13	ms	500		

4.4 LVDS Signal Timing Characteristics

4.4.1 AC Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Differential Input High	Vth	-	-	+100	mV	V _{CM} =+1.2V
Differential Input Low	VtI	-100	-	-	mV	V _{CM} =+1.2V
Magnitude Differential Input	V _{ID}	200	-	400	mV	-
Common Mode Voltage	V _{CM}	0.3+ (VID/2)	1	VDD-1.2-(VID/2)	V	-
Common Mode Voltage	$\Delta V_{\sf CM}$	-	-	50	mV	V _{CM} =+1.2V

Note (1) Input signals shall be low or Hi-Z state when VDD is off.

(2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD.

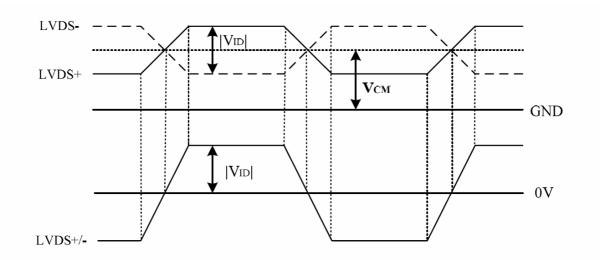
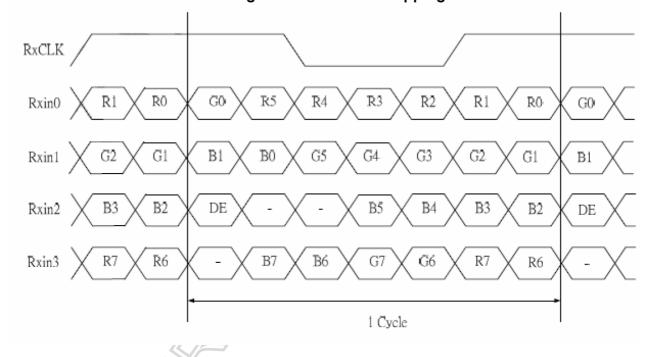




Figure 9 LVDS Data Mapping

4.4.2 Timing Table

Parameter	Symbol	Unit	Min.	Тур.	Max.	
Frame Rate		Hz	-	60	-	
Frame Period	t∨	line	(815)	(823)	(1023)	
Vertical Display Time	t∨D	line	800			
Vertical Blanking Time	tvw+tvBP+tvFP	line	(15)	(23)	(33)	
1 Line Scanning Time	tн	clock	(1410)	(1440)	(1470)	
Horizontal Display Time	thd	clock	1280			
Horizontal Blanking Time	thw+thBP+thFP	clock	(60)	(160)	(190)	
Clock Rate	1/Tc	MHz	(68.9)	(71.1)	(73.4)	

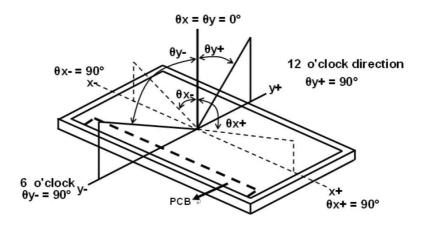
5. INTERFACE

Pin #	Singnal Name	Description	Remarks
1	NC	Not Connect	-
2	VDD	Power Supply, 3.3V (typical)	-
3	VDD	Power Supply, 3.3V (typical)	
4	VDD_EDID	Power Supply for EDID I2C Flash IC	
5	SCL_EDID	I2C Serial Clock for EDID I2C Flash IC	
6	SDA_EDID	I2C Serial Data for EDID I2C Flash IC	
7	NC	Not Connect	
8	LV0N	-LVDS differential data input	
9	LV0P	+LVDS differential data input	
10	GND	Ground	
11	LV1N	-LVDS differential data input	
12	LV1P	+LVDS differential data input	
13	GND	Ground	
14	LV2N	-LVDS differential data input	
15	LV2P	+LVDS differential data input	
16	GND	Ground	
17	LVCLKN	-LVDS differential data input	
18	LVCLKP	+LVDS differential data input	
19	GND	Ground	
20	LV3N	-LVDS differential data input	
21	LV3P	+LVDS differential data input	
22	GND	Ground	
23	LED_GND	Ground for LED Driving	
24	LED_GND	Ground for LED Driving	
25	LED_GND	Ground for LED Driving	
26	NC	Not Connect	
27	LED_PWM	PWM Input Signal for LED Driver	
28	LED_EN	LED Enable Pin	
29	CABC_EN	Content Adaptive Brightness Control	Enable: Hi
		Function Enable	Disable: Lo
30	NC	Not Connect	
31	LED_VCC	Power Supply for LED Driver	
32	LED_VCC	Power Supply for LED Driver	
33	LED_VCC	Power Supply for LED Driver	
34	NC	Not Connect	
35	BIST	BIST pin	
36-40	NC (())	Not Connect	

6. Optical Specifications

Table 2 Optical Characteristics

Item	Conditions		Min.	Тур.	Max.	Unit	Note
Viewing Angle	Horizontal	θ∟	(75)	(85)	-		
Viewing Angle		θR	(75)	(85)	-	degree	(1),(2),(3)
(CR>10)	Vertical	θт	(75)	(85)	-	uog.co	(:),(=),(=)
	Vertical	Ө в	(75)	(85)	-		
Contrast Ratio	Center		(600)	(800)	-	-	(1),(2),(4)
Response Time	Rising		-	-	-	ms	
	Falling		-	-	-	ms	(1),(2),(5)
	Rising + Fallin	g	-	25	-	ms	
	NTSC		-	45	-	%	(1),(2)
	Red	Х		0.561	Тур.	-	(4) (2)
	Red	У		0.334		-	
Color	Green	Х	Тур.	0.341		-	
Chromaticity	Green	У	-0.05	0.568	+0.05	-	
(CIE1931)	Blue	Χ		0.161		-	(1),(2)
	Blue	У		0.129		-	
	White	Χ	-	0.313	-	-	
	White	У	-	0.329	-	-	
White	Center		255	295	-	cd/m^2	(1),(2),(6)
Luminance							(//(//(-/
Luminance Uniformity	9Points		70	75	-	%	(1),(2),(6)


Note (1) Measurement Setup:

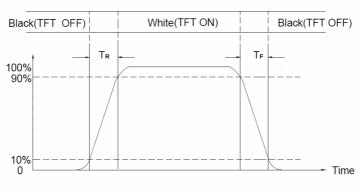
Avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

LCD Module LCD Panel Photo meter (DMS 1140) Center of the Screen Light Shield Room 180 mm *Ambient Luminance<2lux *Ambient Temperature

Figure 4 Measurement Setup

Figure 5 Definition of Viewing Angle

Note (4) Definition Of Contrast Ratio (CR)

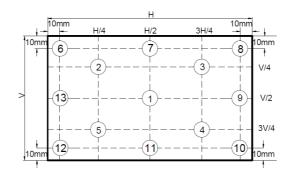

The contrast ratio can be calculated by the following expression

Contrast Ratio (CR) = L255 / L0

L63: Luminance of gray level 255, L0: Luminance of gray level 0

Note (5) Definition Of Response Time (T_R, T_F)

Figure 6 Definition of Response Time


Note (6) Definition Of brightness Luminance

Date: 2014/10/14

Luminance uniformity = $\frac{\text{Min} (L1, L6, L7, L8, L9, L10, L11, L12, L13)}{\text{Max}(L1, L6, L7, L8, L9, L10, L11, L12, L13)} \times 100\%$

H—Active area length V—Active area width

Figure 7 Measurement Locations

7. Projected capacitive-type Touch panel specification

7.1 Basic Characteristic

ITEM	SPECIFICATION
Туре	Projective Capacitive Touch Panel
Activation	Two-fingers or Signal-finger
X/Y Position Reporting	Absolute Position
Touch Force	No contact pressure required
Calibration	No need for calibration
Control IC	EETI EXC7200 +EX5404
Cover Lens	Soda lime tempered glass T=2.0
Bonding	Between Touch Sensor and Cover
	Lens: Optical Bonding.
	Between Touch Sensor and TFT
	LCD: AIR Gap - Double side tape.

7.2 Interface

CN6		
Pin No.	Symbol	Function
1	VDD	USB POWER 5V
2	D+	USB Data+
3	D-	USB Data-
4	NC	No connect
5	GND	GND
6	GND	GND

Date: 2014/10/14 AMPIRE CO., LTD.

8. ELIABILITY TEST CONDITIONS

Test Item	Test Conditions	Note
High Temperature Operation	70±3°C ,Dry t=240 hrs	
Low Temperature Operation	-20±3°C, Dry t=240 hrs	
High Temperature Storage	80±3°C , Dry t=240 hrs	1,2
Low Temperature Storage	-30±3°C ,Dry t=240 hrs	1,2
Thermal Shock Test	-20°C ~ 25°C ~ 70°C 30 m in. 5 min. 30 min. (1 cycle) Total 100 cycle(Dry)	1,2
Storage Humidity Test	60 °C, Humidity 90%, 240 hrs	1,2
Vibration Test (Packing)	Sweep frequency: 10 ~ 55 ~ 10 Hz/1min Amplitude: 0.75mm Test direction: X.Y.Z/3 axis Duration: 30min/each axis	2

Note 1: Condensation of water is not permitted on the module.

Note 2: The module should be inspected after 1 hour storage in normal conditions (15-35 $^{\circ}$, 45-65 $^{\circ}$ RH).

Definitions of life end point:

- Current drain should be smaller than the specific value.
- Function of the module should be maintained.
- Appearance and display quality should not have degraded noticeably.
- Contrast ratio should be greater than 50% of the initial value.

9. GENERAL PRECAUTION

9.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

9.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. AMPIRE does not warrant the module, if customers disassemble or modify the module.

9.3 Breakage of LCD Panel

- (1) If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- (2) If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- (3) If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- (4) Handle carefully with chips of glass that may cause injury, when the glass is broken.

9.4 Electric Shock

- (1) Disconnect power supply before handling LCD module.
- (2) Do not pull or fold the LED cable.
- (3) Do not touch the parts inside LCD modules and the fluorescent LED's connector or cables in order to prevent electric shock.

9.5 Absolute Maximum Ratings and Power Protection Circuit

- (1) Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- (2) Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- (3) It's recommended to employ protection circuit for power supply.

9.6 Operation

- (1) Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- (2) Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- (3) When the surface is dusty, please wipe gently with absorbent cotton or other soft material.
- (4) Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may cause deformation or color fading.
- (5) When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzene or other adequate solvent.

9.7 Mechanism

Please mount LCD module by using mounting holes arranged in four corners tightly.

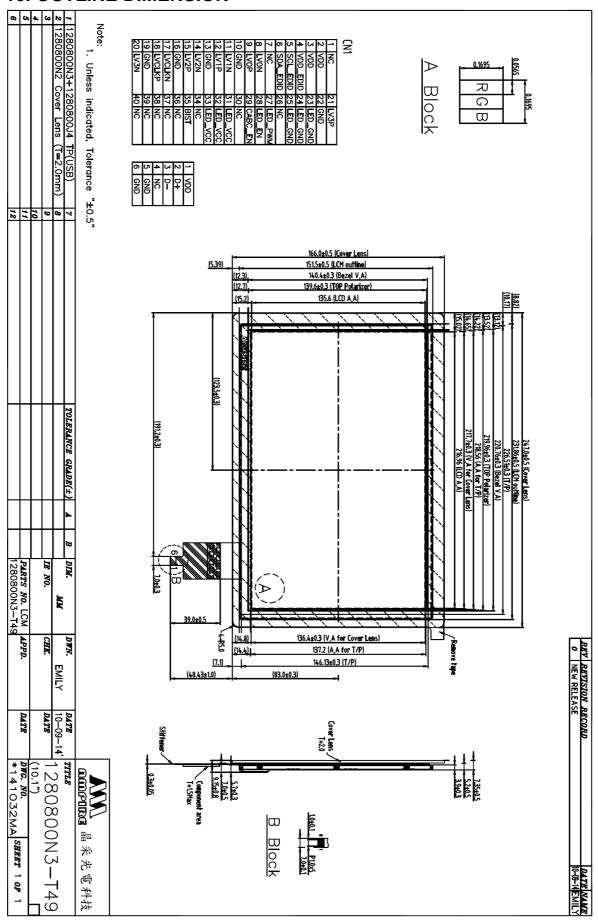
9.8 Static Electricity

- (1) Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- (2) Because LCD modules use CMOS-IC on circuit board and TFT-LCD panel, it is very weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

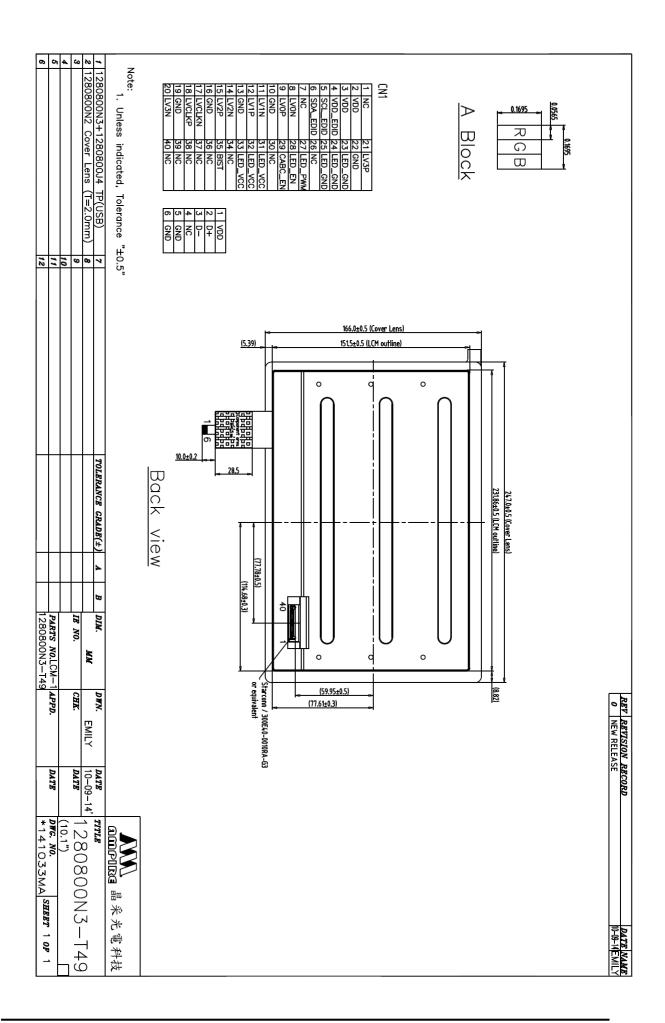
9.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

9.10 Disposal


When disposing LCD module, obey the local environmental regulations.

9.11 Others


Date: 2014/10/14

Do not keep the LCD at the same display pattern continually. The residual image will happen and it will damage the LCD. Please use screen saver.

10. OUTLINE DIMENSION

Date: 2014/10/14

